Keyword: undulator
Paper Title Other Keywords Page
MOBL01 Diagnostic Systems for the PAL-XFEL Commissioning electron, radiation, cavity, target 11
  • C. Kim, S.Y. Baek, H. J. Choi, J.H. Hong, H.-S. Kang, G. Kim, J.H. Kim, I.S. Ko, S.J. Lee, G. Mun, B.G. Oh, B.R. Park, D.C. Shin, Y.J. Suh, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
  In 2011, an X-ray Free-Electron-Laser project was started in the Pohang Accelerator Laboratory (PAL-XFEL). The construction of the PAL-XFEL was finished at the end of 2015, and the commissioning was started from April 2016. The electron beam energy of 10 GeV was achieved at the end of April and the bunch compression was tried in May. The undulator commissioning was started from June. During the commissioning process, various kinds of instruments were used for the beam parameter monitoring including beam position monitors, beam profile monitors, beam charge monitors, beam arrival-time monitors, and beam loss monitors. This work will introduce the PAL-XFEL diagnostic system which was used in the commissioning process.  
slides icon Slides MOBL01 [19.548 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOBL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG17 Performance Test of the Next Generation X-Ray Beam Position Monitor System for the APS Upgrade photon, operation, storage-ring, controls 78
  • B.X. Yang, Y. Jaski, S.H. Lee, F. Lenkszus, M. Ramanathan, N. Sereno, F. Westferro
    ANL, Argonne, Illinois, USA
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for this upgrade and will require keeping short-time beam angle change below 0.25 μrad and long-term angle drift below 0.5 micro-radian. A reliable white x-ray beam diagnostic system in the front end is a key part of the planned beam stabilization system for the APS-U. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beam intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. The data demonstrated that the XBPM system meets the APS-U beam stability requirements.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG51 Electron Beam Longitudinal Diagnostic With Sub-Femtosecond Resolution laser, electron, diagnostics, cavity 173
  • G. Andonian, M.A. Harrison, F.H. O'Shea, A.G. Ovodenko
    RadiaBeam, Santa Monica, California, USA
  • J.P. Duris, J.B. Rosenzweig, N.S. Sudar
    UCLA, Los Angeles, California, USA
  • M.G. Fedurin, K. Kusche, I. Pogorelsky, M.N. Polyanskiy, C. Swinson
    BNL, Upton, Long Island, New York, USA
  • M.K. Weikum
    DESY, Hamburg, Germany
  Ultra-short, high brightness electron beams, with applications to next generation light sources or advanced accelerators, require enhanced resolution of the longitudinal bunch properties to study effects such as the micro-bunching instability. In this paper, we describe a diagnostic that has the promise to achieve sub-femtosecond longitudinal resolution. The diagnostic employs a laser-electron beam interaction in an undulator magnet in tandem with a RF bunch deflecting cavity to impose a angular-longitudinal coordinate correlation on the bunch which is resolvable with standard optical systems. The fundamental underlying concepts of the diagnostic have been tested experimentally at the Brookhaven National Laboratory Accelerator Test Facility (BNL ATF) with the high-brightness electron beam and >100GW IR laser operating in the TEM10 mode. The results include a systematic study of the effects of this laser mode, and energy, on the beam angular projection. Initial runs from the x-band deflecting cavity will also be presented here.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG51  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEBL02 Beam Size Measurements Using Interferometry at LHC injection, radiation, extraction, synchrotron 583
  • G. Trad, E. Bravin, A. Goldblatt, S. Mazzoni, F. Roncarolo
    CERN, Geneva, Switzerland
  • T.M. Mitsuhashi
    KEK, Ibaraki, Japan
  During the long LHC shutdown 2013-2014, both the LHC and its injector chain underwent significant upgrades. The most important changes concerned increasing the maximum LHC beam energy from 4TeV to 6.5TeV and reducing the transverse emittance of the beam from the LHC injectors. These upgrades pose challenges to the measurement of the transverse beam size via Synchrotron Radiation (SR) imaging, as the radiation parameters approach the diffraction limit. Optical SR interferometry, widely used in synchrotron light facilities, was considered as an alternative method to measure the 150 'm rms beam size at top energy as it allows measurements below the diffraction limit. A system based on this technique was therefore implemented in the LHC, for the first time on a proton machine. This paper describes the design of the LHC interferometer and its two SR sources (a superconducting undulator at low energy and a bending dipole at high energy), along with the expected performance in terms of beam size measurement as compared to the imaging system. The world's first proton beam interferogram measured at the LHC will be shown and plans to make this an operational monitor will be presented.  
slides icon Slides WEBL02 [42.662 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEBL02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG18 Cavity BPM System for DCLS cavity, FEL, electron, pick-up 661
  • J. Chen, J. Chen, L.W. Lai, Y.B. Yan, L.Y. Yu, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
  • Y.B. Leng
    SSRF, Shanghai, People's Republic of China
  Dalian Coherent Light Source (DCLS) is a new FEL fa-cility under construction in China. Cavity beam position monitor (CBPM) is employed to measure the transverse position with a micron level resolution requirement in the undulator section. The design of cavity, RF front end and data acquisition (DAQ) system will be introduced in this paper. The preliminary measurement result with beam at Shanghai Deep ultraviolet (SDUV) FEL facility will be addressed as well.  
poster icon Poster WEPG18 [2.962 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG18  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG32 First Heating with the European XFEL Laser Heater laser, electron, interaction-region, resonance 694
  • M. Hamberg
    Uppsala University, Uppsala, Sweden
  • F. Brinker, M. Scholz
    DESY, Hamburg, Germany
  Funding: DESY and Swedish Research council
The European XFEL is a 3.4 km long free-electron laser (FEL) which will deliver radiation in the wavelength regime of 0.05 to 4.7 nm. To avoid problems with longitudinal microbunching instabilities a laser heater is implemented. It heats up the electron bunches which will improve the overall brightness level of the FEL. I report the commissioning steps undertaken and the first recorded heating outputs observed in the injector section.
poster icon Poster WEPG32 [2.322 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG32  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)