Keyword: target
Paper Title Other Keywords Page
MOBL01 Diagnostic Systems for the PAL-XFEL Commissioning electron, radiation, undulator, cavity 11
  • C. Kim, S.Y. Baek, H. J. Choi, J.H. Hong, H.-S. Kang, G. Kim, J.H. Kim, I.S. Ko, S.J. Lee, G. Mun, B.G. Oh, B.R. Park, D.C. Shin, Y.J. Suh, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
  In 2011, an X-ray Free-Electron-Laser project was started in the Pohang Accelerator Laboratory (PAL-XFEL). The construction of the PAL-XFEL was finished at the end of 2015, and the commissioning was started from April 2016. The electron beam energy of 10 GeV was achieved at the end of April and the bunch compression was tried in May. The undulator commissioning was started from June. During the commissioning process, various kinds of instruments were used for the beam parameter monitoring including beam position monitors, beam profile monitors, beam charge monitors, beam arrival-time monitors, and beam loss monitors. This work will introduce the PAL-XFEL diagnostic system which was used in the commissioning process.  
slides icon Slides MOBL01 [19.548 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOBL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG27 The Design, Construction and Operation of the Beam Instrumentation for the High Intensity and Energy Upgrade of ISOLDE at CERN diagnostics, detector, cryomodule, operation 101
  • W. Andreazza, E. Bravin, E.D. Cantero, S. Sadovich, A.G. Sosa, R. Veness
    CERN, Geneva, Switzerland
  • J.M. Carmona, J.H. Galipienzo, P.N.G. Noguera Crespo
    AVS, Elgoibar, Spain
  The High Intensity and Energy (HIE) upgrade to the on-line isotope separation facility (ISOLDE) facility at CERN is currently in the process of being commissioned. The very tight space available between the superconducting acceleration cavities and a challenging specification led to the design of a compact 'diagnostic box' with a number of insertable instruments on a common vacuum chamber. The box was conceived in partnership with the engineering firm AVS and produced as a completed assembly in industry. 14 diagnostic boxes have been installed and are now operational. This paper will describe the design, the construction and first results from operation of these HIE ISOLDE diagnostic boxes.  
poster icon Poster MOPG27 [0.744 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG27  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG28 The Brookhaven Linac Isotope Production (BLIP) Facility Raster Scanning System First Year Operation with Beam linac, instrumentation, laser, isotope-production 105
  • R.J. Michnoff, Z. Altinbas, P. Cerniglia, R. Connolly, C. Cullen, C. Degen, R.L. Hulsart, R.F. Lambiase, L.F. Mausner, W.E. Pekrul, D. Raparia, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Dept. of Energy
Brookhaven National Laboratory's BLIP facility produces radioisotopes for the nuclear medicine community and industry, and performs research to develop new radioisotopes desired by nuclear medicine investigators. A raster scanning system was recently completed in December 2015 and fully commissioned in January 2016 to provide improved beam distribution on the targets, allow higher beam intensities, and ultimately increase production yield of the isotopes. The project included the installation of horizontal and vertical dipole magnets driven at 5 kHz with 90 deg phase separation to produce a circular beam raster pattern, a beam interlock system, and several instrumentation devices including multi-wire profile monitors, a laser profile monitor, beam current transformers and a beam position monitor. The first year operational experiences will be presented.
poster icon Poster MOPG28 [39.944 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG28  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG32 Beam Diagnostics for the Multi-MW Hadron Linac IFMIF/DONES diagnostics, beam-diagnostic, linac, SRF 111
  • I. Podadera, B. Brañas, A. Guirao, A. Ibarra, D. Jiménez-Rey, E. Molina Marinas, J. Mollá, C. Oliver, R. Varela
    CIEMAT, Madrid, Spain
  • P. Cara
    Fusion for Energy, Garching, Germany
  Funding: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053
In the frame of the material research for future fusion reactors, the construction of a simplified facility of IFMIF*, the so-called IFMIF/DONES** (Demo-Oriented Neutron Early Source), to generate sufficient material damage for the new design of DEMO . DONES will be a 40 MeV, 125 mA deuteron accelerator. The 5 MW beam will impact in a lithium flow target to yield a neutron source The detailed design of the DONES accelerator is being designed within EUROFUSION-WPENS project. One of the most critical tasks of the accelerator will be to identify the layout of beam diagnostics along the accelerator. This instrumentation must guarantee the high availability of the whole accelerator system and the beam characteristics and machine protection. This contribution will describe the beam diagnostics selected along the accelerator, focusing in the High Energy Beam Transport line, in charge of shaping the beam down to the high power target. The main open questions will be analyzed and the path to obtain the detailed design by the end of the project detailed.
*, IFMIF Intermediate Engineering Design Report
**, DONES Conceptual Design Report, April 2014
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG32  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG35 Single Pulse Sub-Picocoulomb Charge Measured by a Turbo-ICT in a Laser Plasma Accelerator background, laser, plasma, electron 119
  • F. Stulle, J.F. Bergoz
    BERGOZ Instrumentation, Saint Genis Pouilly, France
  • W. Leemans, K. Nakamura
    LBNL, Berkeley, California, USA
  Funding: The work by the BELLA Center scientists and staff was supported by Office of Science, Office of HEP, US DOE under Contract DE-AC02-05CH11231 and the National Science Foundation.
Experiments at the Berkeley Lab Laser Accelerator (BELLA) verified that the Turbo-ICT allows high resolution charge measurements even in the presence of strong background signals. For comparison, a Turbo-ICT and a conventional ICT were installed on the BELLA petawatt beamline, both sharing the same vacuum flanges. We report on measurements performed using a gas-jet and a capillary-discharge based laser plasma accelerator. In both setups the Turbo-ICT was able to resolve sub-picocoulomb charges.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG35  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUBL04 Electro-Optical Methods for Multipurpose Diagnostics laser, electron, plasma, acceleration 290
  • R. Pompili, M.P. Anania, M. Bellaveglia, F.G. Bisesto, E. Chiadroni, A. Curcio, D. Di Giovenale, G. Di Pirro, M. Ferrario
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
  Electro-optic sampling (EOS) based temporal diagnostics allows to precisely measure the temporal profile of electron bunches with resolution of about 50 fs in a non-destructive and single-shot way. At SPARC_LAB we adopted the EOS in very different experimental fields. We measured for the first time the longitudinal profile of a train of multiple bunches at THz repetition rate, as the one required for resonant Plasma Wakefield Acceleration (PWFA) in a single-shot and non-intercepting way. By means of the EOS we demonstrated a new hybrid compression scheme that is able to provide ultra-short bunches (<90 fs) with ultra-low (<20 fs) timing-jitter relative to the EOS laser system. Furthermore, we recently developed an EOS system in order to provide temporal and energy measurements in a very noisy and harsh environment: electron beams ejected by the interaction of high-intensity (hundreds TW class) ultra-short (35fs) laser pulses with solid targets by means of the so-called Target Normal Sheath Acceleration (TNSA) method.  
slides icon Slides TUBL04 [2.183 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUBL04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG29 The Frascati LINAC Beam-Test Facility (BTF) Performance and Upgrades linac, positron, electron, dipole 395
  • B. Buonomo, D.G.C. Di Giulio, L.G. Foggetta
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
  Funding: Supported by the H2020 project AIDA-2020, GA no. 654168
In the last 11 years, the Beam-Test Facility (BTF) of the Frascati DAΦNE accelerator, gained an important role in the development of particle detectors. e- or e+ beams can be extracted to a dedicated transfer line, where a target plus a dipole and collimator, can attenuate and select secondary particles in a narrow p (<1%) band. BTF can provide tuneable beams in a wide range of: energy (to 750 MeV/540 MeV for e/e+), charge (up to 1010 e/bunch) and pulse length (1.4-40 ns) up to 49 Hz rep. rate. Beam spot and divergence can be adjusted, down to sub-mm sizes and 2 mrad. Photons can be produced on a target, and energy-tagged inside the dipole by Si micro-strip detectors. A shielded W target is used for neutron production: about 8 10-7/pr, 1 MeV n are produced. 200 beam days are delivered to about 20 groups/year. A dedicated experiment PADME for the search of light dark matter, like dark photons, ALPs, etc., was approved aiming at a sensitivity up to m=26 MeV/c2. An upgrade program of the facility is proposed, along 3 lines: consolidation of the LINAC, in order to guarantee a stable operation in the longer term; upgrade of the energy up to 1 GeV; doubling of the BTF beam-lines.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG31 The Alignment of Convergent Beamlines at a New Triple Ion Beam Facility ion, experiment, laser, alignment 403
  • O.F. Toader, T. Kubley, F.U. Naab, E.E. Uberseder
    NERS-UM, Ann Arbor, Michigan, USA
  The Michigan Ion Beam Laboratory (MIBL) at the University of Michigan in Ann Arbor Michigan, USA, has recently upgraded its capabilities from a two accelerator to a three accelerator operation mode. The laboratory, equipped with a 3 MV Tandem, a 400 kV Ion Implanter and a 1.7 MV Tandem has also increased the number of available beamlines from three to seven with two more in the planning stages. The MIBL staff had to overcome multiple challenges during the physical alignment process of the accelerators, beamlines and experimental end-stages. Not only the position of the accelerators changed, but the target chambers were moved into a different room behind a 1 m thick concrete wall. At the same time, one beamline from each accelerator had to converge and connect to a single chamber at a precise angle. This setup allows researchers to conduct simultaneous dual and triple ion beam experiments. This work presents the details of building this new setup, with focus on the alignment process.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG31  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG32 Blip Scanning System Power Supply Control feedback, impedance, controls, software 406
  • Z. Altinbas, R.F. Lambiase, C. Theisen
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Dept. of Energy.
In the Brookhaven LINAC Isotope Producer (BLIP) facility, a fixed target is bombarded by proton beam to produce isotopes for medical research and cancer treatment. This bombardment process causes spot heating on the target and reduces its lifetime. To mitigate this problem, an upgrade to the beamline has been made by spreading the beam on the target in a circular pattern, which allows the target to heat more uniformly. The beam is steered in a circular pattern by a magnet with orthogonal (X and Y) windings. Each of these two windings is independently powered as part of a resonant circuit driven by a power amplifier. This paper describes the hardware platform used as well as the software implementation of the resonant circuit design and its feedback loops.
poster icon Poster TUPG32 [9.262 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG32  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG42 Design of a Very Compact 130 MeV Møller Polarimeter for the S-DALINAC electron, polarization, scattering, detector 438
  • T. Bahlo, J. Enders, T. Kürzeder, N. Pietralla, J. Wissmann
    TU Darmstadt, Darmstadt, Germany
  Funding: Supported by the DFG through grants SFB 634 and GRK 2128
At the Superconducting Darmstadt Linear Accelerator S-DALINAC it is possible to accelerate electron beams to a maximum energy of up to 130 MeV. In the S-DALINAC Polarized Injector SPIN polarized electrons with a polarization of up to 86% can be produced. The polarization can be measured with two already mounted Mott polarimeters in the injector beamline where the electrons can have energies of up to 10 MeV. To allow polarization measurements behind the main accelerator a Moeller polarimeter suitable for energies between 50 MeV and 130 MeV is currently being developed. The rather low and variable beam energies result in a big and also variable scattering angle distribution. Combined with strict spatial boundary conditions at the designated mounting area necessitate a very compact set-up for the polarimeter. In addition to an overview over the planned polarimeter we will present drafts of the target chamber, the beam separation chamber including a angle-defining aperture and the separation dipole as well as the beamline to the detectors and the beam dump.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG42  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG62 X-Ray Smith-Purcell Radiation for Non-Invasive Submicron Diagnostics of Electron Beams Having TeV Energy radiation, diagnostics, electron, plasma 494
  • A.A. Tishchenko, D.Yu. Sergeeva
    MEPhI, Moscow, Russia
  We present the general theory of X-ray Smith-Purcell radiation from ultrarelativistic beams proceeding from our earlier results. The theory covers also the case of oblique incidence of the beam to the target, which leads to the conical effect in spatial distribution of Smith-Purcell radiation and allows one to count the divergence of the beam; also, the analytical description of the incoherent form-factor of the beam is given.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG62  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG65 OTR Measurements with Sub-MeV Electrons electron, radiation, TRIUMF, linac 501
  • V.A. Verzilov, P.E. Dirksen
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  It is a quite common belief that measurements of Optical Transition Radiation (OTR) produced by sub-MeV electron beams are impossible or at least require special highly sensitive instrumentation. The TRIUMF electron linac, presently undergoing commissioning, is capable of delivering up to 10mA of CW electron beams. Simulations showed that such a powerful beam generates substantial amount of light even at electron energies available at the output of the thermionic gun. The experiment was then setup to test the predictions. This paper reports OTR measurements for the range of electron energies 100-300 keV performed with an ordinary CCD camera.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG65  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG70 Test of the Imaging Properties of Inorganic Scintillation Screens Using Fast and Slow Extracted Ion Beams ion, extraction, radiation, proton 516
  • A. Lieberwirth, P. Forck, O.K. Kester, S. Lederer, T. Sieber, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • W. Ensinger, S. Lederer, A. Lieberwirth
    TU Darmstadt, Darmstadt, Germany
  • P. Forck, O.K. Kester
    IAP, Frankfurt am Main, Germany
  Funding: Work supported by BMBF, contract number 05P12RDRBJ
Inorganic scintillation screens are a common transverse profile diagnostics tool for beams extracted from the heavy ion synchrotron SIS18 at GSI. Detailed investigations concerning light output, profile reproduction and spectral emission were performed for phosphor screens P43 and P46, single crystal YAG:Ce, alumina ceramics and Chromium-doped alumina (Chromox). The screens were irradiated with several ion species from proton to Uranium. The particle energy was 300 MeV/u at intensities in the range from some 106 to 1010 particles per pulse, using either fast extraction (1μsecond duration) or slow extraction (some 100 ms duration). The light output coincides for both extraction types, i.e. no significant saturation was observed. For all materials the optical emission spectrum is independent on the ion species or beam intensities. Radiation hardness tests were performed with up to 1012 accumulated ions: The phosphor P46 as well as YAG:Ce shows no significant decrease of light output, while for P43 and Chromox a decrease by 5 to 15 % was measured. These results will trigger the choice of the standard screens installed at the FAIR facility.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG70  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG74 Spot Size Measurements in the ELI-NP Compton Gamma Source linac, diagnostics, optics, radiation 532
  • F. Cioeta, E. Chiadroni, G. Di Pirro, G. Franzini, V. Shpakov, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • M. Marongiu
    INFN-Roma, Roma, Italy
  • A. Mostacci, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
  A high brightness electron Linac is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32, 16 ns spaced, bunches with a nominal charge of 250 pC will collide with the laser beam in the interaction point. Electron beam spot size is measured with an OTR (optical transition radiation) profile monitors. In order to measure the beam properties, the optical radiation detecting system must have the necessary accuracy and resolution. This paper deals with the studies of different optic configurations to achieve the magnification, resolution and accuracy desired considering design and technological constraints; we will compare several configurations of the optical detection line to justify the one chosen for the implementation in the Linac.  
poster icon Poster TUPG74 [44.049 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG74  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG75 Thermal Simulations for Optical Transition Radiation Screen for ELI-NP Compton Gamma Source radiation, electron, simulation, linac 536
  • F. Cioeta, D. Alesini, A. Falone, V.L. Lollo, L. Pellegrino, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • M. Ciambrella, A. Mostacci, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
  • M. Marongiu, V. Pettinacci
    INFN-Roma, Roma, Italy
  The Gamma Beam Source (ELI-GBS) is a high brightness electron LINAC that is being built at the ELI Nuclear Physics (ELI-NP) facility in Romania. The ELI-GBS aims to produce high quality gamma beam through Compton Backscattering. A train of 32 bunches at 100Hz with a nominal charge of 250pC is accelerated up to 740 MeV. Two interaction points with an IR Laser beam produces the gamma beam at two different energies. In order to measure the electron beam spot size and the beam properties, the LINAC is equipped with several optical transition radiation (OTR) profile monitors. Those OTR screens must sustain the thermal and mechanical stress due to the energy deposited by the bunches. We present a numerical (ANSYS) study of the thermo-mechanical issues due to beam energy deposition in the screens; our analysis will cover both the steady state and transient regime.  
poster icon Poster TUPG75 [41.161 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG75  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG82 Preliminary Measurement on Potential Luminescent Coating Material for the ESS Target Imaging Systems proton, detector, controls, coupling 559
  • C.A. Thomas, M.A. Hartl, Y. Lee, T.J. Shea
    ESS, Lund, Sweden
  • E. Adli, H. Gjersdal, M.R. Jaekel, O. Rohne
    University of Oslo, Oslo, Norway
  • S. Joshi
    University College West, Trollhätan, Sweden
  We present in this paper the preliminary measurements performed on luminescent materials to be investigated and eventually coated on the ESS target wheel, the Proton Beam Window separating the end of the ESS Linac and the entrance of the ESS target area, and the ESS Dump. Among all the properties of the luminescent material required for the target imaging systems, luminescence yield and luminescent lifetime are essential for two reasons. The first one is trivial, since this material is the source for the imaging system and sets its potential performance. The lifetime is not generally of importance, unless the object is moving, or time dependence measurements are to be done. In our case, the target wheel is moving, and measurement of the beam density current may have to be performed at the 10μups scale. Thus luminescence lifetime of the coating material should be known and measured. In this paper, we present the luminescence measurements of the photo-luminescent lifetime of several materials currently under studies to be used eventually for the first beam on target.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG82  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG31 Upgrades to the LANSCE Isotope Production Facilities Beam Diagnostics electronics, diagnostics, isotope-production, data-acquisition 690
  • H.A. Watkins, D. Baros, D. Martinez, L. Rybarcyk, J.D. Sedillo, R.A. Valicenti
    LANL, Los Alamos, New Mexico, USA
  Funding: Work supported by the U.S. Department of Energy. Contract No. DE-AC52-06NA25396
The Los Alamos Neutron Science Center (LANSCE) is currently upgrading the beam diagnostics capability for the Isotope Production Facility (IPF) as part of an Accelerator Improvement Project (AIP). Improvements to measurements of: beam profile, beam energy, beam current and collimator charge are under development. Upgrades include high density harps, emittance slits, wire-scanners, multi-segment adjustable collimator, data acquisition electronics and motion control electronics. These devices will be installed and commissioned for the 2017 run cycle. Details of the hardware design and system development are presented.
poster icon Poster WEPG31 [3.875 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG31  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG33 The Measurement and Controlling System of Beam Current for Weak Current Accelerator electron, detector, controls, gun 697
  • J.H. Yue, Y. Li, Z.J. Ma, Y. Xie, L. Yu
    IHEP, Beijing, People's Republic of China
  For some detectors' calibration, a very weak electron current provided by accelerator is necessary. In order to control the beam current to the detector, 8 movable slits in which the position resolution of the stoppers is better than 5μm are installed along the accelerator. For the weak current measurement, 9 movable current monitors based on scintillator are installed along the beam line. These monitors can measure the very weak current, even to several electrons. The monitors can be pulled away the beam axis when the electron beam goes to the downstream.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG33  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG59 Thermal Simulations of Wire Profile Monitors in ISIS Extracted Proton Beamline 1 simulation, proton, neutron, electron 785
  • D.W. Posthuma de Boer, A. Pertica
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  Wire scanners and secondary emission (SEM) grids are used for measurements of transverse beam profile at the ISIS neutron and muon source. Silicon carbide-coated carbon fibre wires are used in profile monitors throughout the ISIS accelerator. One such SEM grid is currently installed close to the target in EPB2 and is intercepted by the 800 MeV proton beam at a repetition rate of 10 Hz. Future profile measurements will require another of these monitors to be installed close to the target in EPB1; intercepted with a repetition rate of 40 Hz. Wires intercepting the ion beam are heated due to the deposition of beam-energy. Thermal simulations for the higher repetition rate were performed using ANSYS and a numerical code. The numerical code was then expanded to include various beam, wire and material properties. Assumptions for temperature dependent material emissivities and heat capacities were included in the simulation. Estimated temperatures due to the energy deposited by protons, and approximate values of deposited energy from the expected neutron flux are presented. The effects on wire-temperature of various beam and wire parameters are also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG59  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG61 Theory of X-Ray Transition Radiation from Graphene for Transition Radiation Detectors radiation, electron, detector, plasma 788
  • A.A. Tishchenko, A. Romaniouk, D.Yu. Sergeeva, M.N. Strikhanov
    MEPhI, Moscow, Russia
  We present the theory of transition radiation for monolayers in X-ray domain from the first principles and consider the pros and cons of using graphene-monolayer in transition radiation detectors.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG61  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG62 Incoherent and Coherent Polarization Radiation as Instrument of the Transversal Beam Size Diagnostics radiation, polarization, factory, diagnostics 792
  • D.Yu. Sergeeva, M.N. Strikhanov, A.A. Tishchenko
    MEPhI, Moscow, Russia
  Polarization radiation, which includes diffraction radiation (DR), transition radiation (TR), Smith-Purcell radiation, and others, can be a good instrument for beam diagnostics. All information about the beam size is contained in the so-called form-factor of the beam. The form-factor represents the sum of two parts corresponding to the coherent and incoherent radiation*. Contrary to the general opinion the incoherent part does not always equal unity*, **. In this report we give theoretical description of the incoherent and coherent parts of the form-factor both for Gaussian and uniform distribution of the ultrarelativistic particles in the bunch*, ***. The theory constructed describes also the case of beam skimming the target, which leads to mixing of DR and TR***. We show that the incoherent part depends on the transversal size of the beam, and dependence differs for different distributions. The role of the incoherent part of the form-factor of the bunch for different parameters is discussed.
* D.Yu. Sergeeva, A.A. Tishchenko et al., NIM B (2013)
** J.H. Brownell et al., PRE (1998); G. Doucas et al., PR STAB (2002)
*** A.A. Tishchenko, D.Yu. Sergeeva et al., Vacuum (2016)
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG62  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)