Overview and Commissioning
Paper Title Page
MOAL02 Diagnostics at the Max IV 3 GeV Storage Ring During Commissioning 1
  • Å. Andersson, J. Breunlin, B.N. Jensen, R. Lindvall, E. Mansten, D. Olsson, J. Sundberg, P.F. Tavares, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
  The MAX IV 3 GeV storage ring based on a multibend achromat lattice allowing for horizontal emittances from 330 pm rad down to 180 pm rad, depending on the number of insertion devices. The diagnostics used during commissioning will be described, with emphasis on the emittance diagnostics This will involve two diagnostic beam lines to image the electron beam with infrared and ultraviolet synchrotron radiation from bending dipoles, in order to determine also beam energy spread. The scheme for horizontal emittance measurements looks promising also for an order of magnitude lower emittance. Bunch lengthening with harmonic cavities is essential for the low emittance machine performance. We have used a radiation based sampling technique to verify individual bunch distributions.  
slides icon Slides MOAL02 [2.820 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOAL02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOAL03 Beam Commissioning of SuperKEKB Rings at Phase 1 6
  • M. Tobiyama, M. Arinaga, J.W. Flanagan, H. Fukuma, H. Ikeda, H. Ishii, K. Mori, E. Mulyani, M. Tejima
    KEK, Ibaraki, Japan
  • G. Bonvicini
    Wayne State University, Detroit, Michigan, USA
  • E. Mulyani
    Sokendai, Ibaraki, Japan
  • G.S. Varner
    University of Hawaii, Honolulu,, USA
  The Phase 1 commissioning of SuperKEKB rings with-out superconducting final focus magnets or Belle-II de-tector began in Feb., 2016. A total of 1010 mA (LER) and 870 mA (HER) stored beam has been achieved close to the design emittance and x-y coupling. Most of the beam diagnostics, including new systems such as gated turn-by-turn monitors and X-ray beam size monitors, have been commissioned with beam and proved to be essential to the success of machine commissioning. The results of the beam commissioning, including the evaluation and diffi-culties of the beam diagnostics are shown.  
slides icon Slides MOAL03 [9.607 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOAL03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOBL01 Diagnostic Systems for the PAL-XFEL Commissioning 11
  • C. Kim, S.Y. Baek, H. J. Choi, J.H. Hong, H.-S. Kang, G. Kim, J.H. Kim, I.S. Ko, S.J. Lee, G. Mun, B.G. Oh, B.R. Park, D.C. Shin, Y.J. Suh, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
  In 2011, an X-ray Free-Electron-Laser project was started in the Pohang Accelerator Laboratory (PAL-XFEL). The construction of the PAL-XFEL was finished at the end of 2015, and the commissioning was started from April 2016. The electron beam energy of 10 GeV was achieved at the end of April and the bunch compression was tried in May. The undulator commissioning was started from June. During the commissioning process, various kinds of instruments were used for the beam parameter monitoring including beam position monitors, beam profile monitors, beam charge monitors, beam arrival-time monitors, and beam loss monitors. This work will introduce the PAL-XFEL diagnostic system which was used in the commissioning process.  
slides icon Slides MOBL01 [19.548 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOBL01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOBL02 First Experience with the Standard Diagnostics at the European XFEL Injector 14
  • D. Lipka, A. Affeldt, A. Awwad, N. Baboi, B. Barret, B. Beutner, F. Brinker, W. Decking, A. Delfs, M. Drewitsch, O. Frank, C. Gerth, V. Gharibyan, O. Hensler, M. Hoeptner, M. Holz, K.K. Knaack, F. Krivan, I. Krouptchenkov, J. Kruse, G. Kube, B. Lemcke, T. Lensch, J. Liebing, T. Limberg, B. Lorbeer, J. Lund-Nielsen, S.M. Meykopff, B. Michalek, J. Neugebauer, Re. Neumann, Ru. Neumann, D. Nölle, M. Pelzer, G. Petrosyan, Z. Pisarov, P. Pototzki, G. Priebe, K.R. Rehlich, D. Renner, V. Rybnikov, G. Schlesselmann, F. Schmidt-Föhre, M. Scholz, L. Shi, P.A. Smirnov, H. Sokolinski, C. Stechmann, M. Steckel, R. Susen, H. Tiessen, S. Vilcins, T. Wamsat, N. Wentowski, M. Werner, Ch. Wiebers, J. Wilgen, K. Wittenburg, R. Zahn, A. Ziegler
    DESY, Hamburg, Germany
  • R. Baldinger, R. Ditter, B. Keil, W. Koprek, R. Kramert, G. Marinkovic, M. Roggli, M. Stadler, D.M. Treyer
    PSI, Villigen PSI, Switzerland
  • A. Ignatenko
    DESY Zeuthen, Zeuthen, Germany
  • A. Kaukher
    XFEL. EU, Hamburg, Germany
  • O. Napoly, C. Simon
    CEA/DSM/IRFU, France
  The injector of the European XFEL is in operation since December 2015. It includes, beside the gun and the accelerating section, containing 1.3 and a 3.9 GHz accelerating module, a variety of standard diagnostics systems specially designed for this facility. With very few exceptions, all types of diagnostics systems are installed in the injector. Therefore the operation of the injector is served to validate and prove the diagnostics characteristics for the complete European XFEL. Most of the standard diagnostics has been available for the start of beam operation and showed the evidence of first beam along the beam line. In the following months the diagnostics has been optimized and used for improvements of beam quality. First operational experiences and results from the standard beam diagnostics in the injector of the European XFEL will be reported in this contribution.  
slides icon Slides MOBL02 [5.844 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOBL02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG27 The Design, Construction and Operation of the Beam Instrumentation for the High Intensity and Energy Upgrade of ISOLDE at CERN 101
  • W. Andreazza, E. Bravin, E.D. Cantero, S. Sadovich, A.G. Sosa, R. Veness
    CERN, Geneva, Switzerland
  • J.M. Carmona, J.H. Galipienzo, P.N.G. Noguera Crespo
    AVS, Elgoibar, Spain
  The High Intensity and Energy (HIE) upgrade to the on-line isotope separation facility (ISOLDE) facility at CERN is currently in the process of being commissioned. The very tight space available between the superconducting acceleration cavities and a challenging specification led to the design of a compact 'diagnostic box' with a number of insertable instruments on a common vacuum chamber. The box was conceived in partnership with the engineering firm AVS and produced as a completed assembly in industry. 14 diagnostic boxes have been installed and are now operational. This paper will describe the design, the construction and first results from operation of these HIE ISOLDE diagnostic boxes.  
poster icon Poster MOPG27 [0.744 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG27  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG28 The Brookhaven Linac Isotope Production (BLIP) Facility Raster Scanning System First Year Operation with Beam 105
  • R.J. Michnoff, Z. Altinbas, P. Cerniglia, R. Connolly, C. Cullen, C. Degen, R.L. Hulsart, R.F. Lambiase, L.F. Mausner, W.E. Pekrul, D. Raparia, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Dept. of Energy
Brookhaven National Laboratory's BLIP facility produces radioisotopes for the nuclear medicine community and industry, and performs research to develop new radioisotopes desired by nuclear medicine investigators. A raster scanning system was recently completed in December 2015 and fully commissioned in January 2016 to provide improved beam distribution on the targets, allow higher beam intensities, and ultimately increase production yield of the isotopes. The project included the installation of horizontal and vertical dipole magnets driven at 5 kHz with 90 deg phase separation to produce a circular beam raster pattern, a beam interlock system, and several instrumentation devices including multi-wire profile monitors, a laser profile monitor, beam current transformers and a beam position monitor. The first year operational experiences will be presented.
poster icon Poster MOPG28 [39.944 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG28  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG29 Beam Diagnostics Design for a Compact Superconducting Cyclotron for Radioisotope Production 108
  • R. Varela, P. Abramian, J. Calero, P. Calvo, M.A. Domínguez, E.F. Estévez, L. García-Tabarés, D. Gavela, P. Gómez, A. Guirao, J.L. Gutiérrez, J.I. Lagares, D. López, L.M. Martínez, D. Obradors-Campos, C. Oliver, J.M. Pérez Morales, I. Podadera, F. Toral, C. Vázquez
    CIEMAT, Madrid, Spain
  Funding: Work supported by the Spanish Ministry of Economy and Competitiveness, project FIS2013-40860-R.
The aim of the AMIT cyclotron is to deliver an 8.5 MeV, 10 μA CW proton beam to a target to produce radioisotopes for PET diagnostics. Such a small cyclotron poses some challenges to the diagnostics design due to its small size. Two sets of diagnostics have been designed, each one aiming at a different phase of the machine lifecycle. During normal operation the stripping foil and the target will be used to measure the current, a dual transverse profile monitor based on a scintillating screen and a Fluorescence Profile Monitor will measure the beam position and the transverse profile. During first stages of commissioning the dual transverse profile monitor and the target will be substituted by an emittance monitor based on a pepperpot. A movable interceptive Beam Probe will be located inside the cyclotron to give information about the beam during acceleration. Additionally, a test bench for the characterization of the beam right after the exit of the ion source has been built with different instruments to measure the beam current and the transverse profile. In this paper the present status of the design, simulation and tests of the diagnostics for the AMIT cyclotron are described.
poster icon Poster MOPG29 [2.660 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG32 Beam Diagnostics for the Multi-MW Hadron Linac IFMIF/DONES 111
  • I. Podadera, B. Brañas, A. Guirao, A. Ibarra, D. Jiménez-Rey, E. Molina Marinas, J. Mollá, C. Oliver, R. Varela
    CIEMAT, Madrid, Spain
  • P. Cara
    Fusion for Energy, Garching, Germany
  Funding: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053
In the frame of the material research for future fusion reactors, the construction of a simplified facility of IFMIF*, the so-called IFMIF/DONES** (Demo-Oriented Neutron Early Source), to generate sufficient material damage for the new design of DEMO . DONES will be a 40 MeV, 125 mA deuteron accelerator. The 5 MW beam will impact in a lithium flow target to yield a neutron source The detailed design of the DONES accelerator is being designed within EUROFUSION-WPENS project. One of the most critical tasks of the accelerator will be to identify the layout of beam diagnostics along the accelerator. This instrumentation must guarantee the high availability of the whole accelerator system and the beam characteristics and machine protection. This contribution will describe the beam diagnostics selected along the accelerator, focusing in the High Energy Beam Transport line, in charge of shaping the beam down to the high power target. The main open questions will be analyzed and the path to obtain the detailed design by the end of the project detailed.
*, IFMIF Intermediate Engineering Design Report
**, DONES Conceptual Design Report, April 2014
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG32  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPG33 Design of RISP RFQ Cooler Buncher 115
  • R. Boussaid, S.A. Kondrashev, Y.H. Park
    IBS, Daejeon, Republic of Korea
  Under RISP project, wide variety of intense rare isotope ion beams will be provided. An EBIS charge breeder has been designed to charge breed these beams. Its optimum operation requires injection of bunched beam with high quality. An RFQ cooler buncher RFQCB is designed to meet these requirements. To meet the EBIS beam requirements, RFQCB should efficiently accept high intensity continuous beams and deliver to the EBIS bunched beams with small emittance (3 '.mm.mrad), low energy spread (< 10 eV) and short bunch width (2-10 μs). A new design concept to be implemented in this RFQCB have been developed, including a novel injection/extraction electrodes geometry, new RF voltages with frequency up to 10 MHz and amplitude up to 10 kV with improved differential pumping system. Simulations have shown the efficient handling of beam intensities which were never handled so far with improved beam quality. An overview of the RFQCB design concept will be presented. Simulated performance of the device and design of different sub-systems will be discussed. Beam parameters will be measured using Faraday cups and emittance meter. The design of these diagnostics tools will be described as well.  
poster icon Poster MOPG33 [1.931 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-MOPG33  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG27 Beam Diagnostics for Medical Accelerators 387
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 675265.
The Optimization of Medical Accelerators (OMA) is the aim of a new European Training Network that has received 4 ME of funding within the Horizon 2020 Programme of the European Union. OMA joins universities, research centers and clinical facilities with industry partners to address the challenges in treatment facility design and optimization, numerical simulations for the development of advanced treatment schemes, and beam imaging and treatment monitoring. This contribution presents an overview of the network's research into beam diagnostics and imaging. This includes investigations into applying detector technologies originally developed for high energy physics experiments (such as VELO, Medipix) for medical applications; integration of prompt gamma cameras in the clinical workflow; identification of optimum detector configurations and materials for high resolution spectrometers for proton therapy and radiography; ultra-low charge beam current monitors and diagnostics for cell studies using proton beams. It also summarizes the network-wide training program consisting of Schools, Topical Workshops and Conferences that will be open to the wider medical and accelerator communities.
poster icon Poster TUPG27 [0.388 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG27  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG28 Accelerator Optimization Through Beam Diagnostics 391
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  Funding: This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289485.
A comprehensive set of beam diagnostics is key to the successful operation and optimization of essentially any accelerator. The oPAC project received 6 M€ of funding within the EU's 7th Framework Programme. This has allowed to successfully train 23 Fellows since 2011. The network joins more than 40 institutions from all around the world, including research centers, universities and private companies. One of the project's largest work packages covers research in beam diagnostics. This includes advanced instrumentation for synchrotron light sources and medical accelerators, enhanced beam loss monitoring technologies, ultra-low emittance beam size diagnostics, diagnostics for high intensity beams, as well as the development of electronics for beam position monitors. This contribution presents an overview of the research outcomes from the diagnostics work package and the demonstrated performance of each monitor. It also shows how collaborative research helps achieving beyond state-of-the-art solutions and acts as an ideal basis for researcher training. Finally, an overview of the scientific events the network has been organizing for the wider accelerator community is given.
poster icon Poster TUPG28 [0.429 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG28  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG29 The Frascati LINAC Beam-Test Facility (BTF) Performance and Upgrades 395
  • B. Buonomo, D.G.C. Di Giulio, L.G. Foggetta
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
  Funding: Supported by the H2020 project AIDA-2020, GA no. 654168
In the last 11 years, the Beam-Test Facility (BTF) of the Frascati DAΦNE accelerator, gained an important role in the development of particle detectors. e- or e+ beams can be extracted to a dedicated transfer line, where a target plus a dipole and collimator, can attenuate and select secondary particles in a narrow p (<1%) band. BTF can provide tuneable beams in a wide range of: energy (to 750 MeV/540 MeV for e/e+), charge (up to 1010 e/bunch) and pulse length (1.4-40 ns) up to 49 Hz rep. rate. Beam spot and divergence can be adjusted, down to sub-mm sizes and 2 mrad. Photons can be produced on a target, and energy-tagged inside the dipole by Si micro-strip detectors. A shielded W target is used for neutron production: about 8 10-7/pr, 1 MeV n are produced. 200 beam days are delivered to about 20 groups/year. A dedicated experiment PADME for the search of light dark matter, like dark photons, ALPs, etc., was approved aiming at a sensitivity up to m=26 MeV/c2. An upgrade program of the facility is proposed, along 3 lines: consolidation of the LINAC, in order to guarantee a stable operation in the longer term; upgrade of the energy up to 1 GeV; doubling of the BTF beam-lines.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG30 Testing the Untestable: A Realistic Vision of Fearlessly Testing (Almost) Every Single Accelerator Component Without Beam and Continuous Deployment Thereof 399
  • A. Calia, K. Fuchsberger, M. Hostettler
    CERN, Geneva, Switzerland
  Whenever a bug of some piece of software or hardware stops beam operation, loss of time is rarely negligible and the cost (either in lost luminosity or real financial one) might be significant. Optimization of the accelerator availability is a strong motivation to avoid such kind of issues. Still, even at large accelerator labs like CERN, release cycles of many accelerator components are managed in a "deploy and pray" manner. In this paper we will give a short general overview on testing strategies used commonly in software development projects and illustrate their application on accelerator components, both hardware and software. Finally, several examples of CERN systems will be shown on which these techniques were or will be applied (LHC Beam-Based Feedbacks and LHC Luminosity Server) and describe why it is worth doing so.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG30  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG31 The Alignment of Convergent Beamlines at a New Triple Ion Beam Facility 403
  • O.F. Toader, T. Kubley, F.U. Naab, E.E. Uberseder
    NERS-UM, Ann Arbor, Michigan, USA
  The Michigan Ion Beam Laboratory (MIBL) at the University of Michigan in Ann Arbor Michigan, USA, has recently upgraded its capabilities from a two accelerator to a three accelerator operation mode. The laboratory, equipped with a 3 MV Tandem, a 400 kV Ion Implanter and a 1.7 MV Tandem has also increased the number of available beamlines from three to seven with two more in the planning stages. The MIBL staff had to overcome multiple challenges during the physical alignment process of the accelerators, beamlines and experimental end-stages. Not only the position of the accelerators changed, but the target chambers were moved into a different room behind a 1 m thick concrete wall. At the same time, one beamline from each accelerator had to converge and connect to a single chamber at a precise angle. This setup allows researchers to conduct simultaneous dual and triple ion beam experiments. This work presents the details of building this new setup, with focus on the alignment process.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG31  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG32 Blip Scanning System Power Supply Control 406
  • Z. Altinbas, R.F. Lambiase, C. Theisen
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Dept. of Energy.
In the Brookhaven LINAC Isotope Producer (BLIP) facility, a fixed target is bombarded by proton beam to produce isotopes for medical research and cancer treatment. This bombardment process causes spot heating on the target and reduces its lifetime. To mitigate this problem, an upgrade to the beamline has been made by spreading the beam on the target in a circular pattern, which allows the target to heat more uniformly. The beam is steered in a circular pattern by a magnet with orthogonal (X and Y) windings. Each of these two windings is independently powered as part of a resonant circuit driven by a power amplifier. This paper describes the hardware platform used as well as the software implementation of the resonant circuit design and its feedback loops.
poster icon Poster TUPG32 [9.262 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG32  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG33 Beam Diagnostics at Siam Photon Source 410
  • P. Klysubun, S. Klinkhieo, S. Kongtawong, S. Krainara, T. Pulampong, P. Sudmuang, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
  In recent years the beam diagnostics and instrumenta-tion of Siam Photon Source (SPS), Thailand synchro-tron radiation facility, have been significantly improved for both the booster synchrotron and the 1.2 GeV stor-age ring. Additional diagnostics have been designed, fabricated, and installed, and the existing systems have been upgraded. This paper describes the current status of the beam diagnostics at SPS, as well as their respec-tive performances. These systems include beam posi-tion monitors (BPMs), a diagnostics beamline, beam loss monitors (BLMs), real-time tune measurement setups, and others. Apart from the instrument hardware, the acquisition electronics along with the processing software have been improved as well. The details of these upgrades are reported herewith.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG33  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG34 First Results from the IPHI Beam Instrumentation 413
  • P. Ausset, M. Ben Abdillah, S. Berthelot, C. Joly, J. Lesrel, J.-F. Yaniche
    IPN, Orsay, France
  • D. Bogard, B. Pottin, D. Uriot
    CEA/DSM/IRFU, France
  I.P.H.I. is a High Intensity Proton Injector (C.N.R.S/I.N.2P.3; C.E.A./Irfu and C.E.R.N. collaboration) located at Saclay and now on operation. An E.C.R. source produces a 100 keV, 100 mA C.W. proton beams which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) delivers the beam to a beam stopper. The HEBT is equipped with appropriate beam diagnostics to carry beam current, centroid beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics operate under both pulsed and C.W. operation. However transverse beam profile measurements are acquired under low duty factor pulsed beam operation using a slow wire scanner. The beam instrumentation of the H.E.B.T. is reviewed and the first measurements at 3 MeV are described.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG34  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPG35 LEReC Instrumentation Design & Construction 417
  • T.A. Miller, M. Blaskiewicz, K.A. Drees, A.V. Fedotov, W. Fischer, J.M. Fite, D.M. Gassner, R.L. Hulsart, D. Kayran, J. Kewisch, C. Liu, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, P. Oddo, M.C. Paniccia, I. Pinayev, S. Seletskiy, K.S. Smith, Z. Sorrell, P. Thieberger, J.E. Tuozzolo, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
RHIC will be run at low ion beam center-of-mass energies of 7.7 - 20 GeV/nucleon, much lower than the typical operations at 100 GeV/nucleon. The primary motivation is to explore the existence and location of the critical point on the QCD phase diagram. An electron accelerator is being constructed to provide Low Energy RHIC electron Cooling (LEReC) to cool both the blue & yellow RHIC ion beams by co-propagating a 10 - 50 mA electron beam of 1.6 - 2.6 MeV. This cooling facility will include a 400 keV DC gun, SRF booster cavity and a beam transport with multiple phase adjusting RF cavities to bring the beam to one ring to allow electron-ion co-propagation for ~21 m, then through a 180° U-turn electron transport so that the same electron beam can similarly cool the other counter-rotating ion beam, and finally to a beam dump. The injector commissioning is planned to start in early 2017 and full LEReC commissioning planned to start in early 2018. The instrumentation systems that will be described include current transformers, BPMs, profile monitors, multi-slit and single slit scanning emittance stations, time-of-flight and magnetic energy measurements, and beam halo & loss monitors.
poster icon Poster TUPG35 [14.455 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG35  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG25 Beam Diagnostics for Charge and Position Measurements in ELI-NP GBS 682
  • G. Franzini, F. Cioeta, O. Coiro, D. Pellegrini, M. Serio, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • A. Mostacci, S. Tocci
    University of Rome La Sapienza, Rome, Italy
  The advanced source of Gamma-ray photons to be built in Bucharest (Romania), as part of the ELI-NP European Research Infrastructure, will generate photons by Compton back-scattering in the collision between a multi-bunch electron beam and a high intensity recirculated laser pulse. An S-Band photoinjector and the following C-band Linac at a maximum energy of 720MeV, under construction by an European consortium (EurogammaS) led by INFN, will operate at 100Hz repetition rate with trains of 32 electron bunches, separated by 16ns and a 250pC nominal charge. The different BPMs and current transformers used to measure transverse beam position and charge along the LINAC are described. Design criteria, production status and bench test results of the charge and position pickups are reported in the paper, together with the related data acquisition systems.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG25  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG29 Commissioning Results of the TOP-IMPLART 27 MeV Proton Linear Accelerator 686
  • P. Nenzi, A. Ampollini, G. Bazzano, L. Picardi, M. Piccinini, C. Ronsivalle, V. Surrenti, E. Trinca, M. Vadrucci
    ENEA C.R. Frascati, Frascati (Roma), Italy
  Funding: The work has been granted by Regione Lazio under the agreement "TOP-IMPLART Project"
The results of a 27MeV proton LINAC commissioning are presented. The linac, operating at ENEA Frascati Research Center, consists of a 425MHz injector followed by a 3GHz booster. The injector is a commercial LINAC (ACCSYS-HITACHI PL7) composed by a duoplasmatron source with einzel lens, a 3MeV RFQ and a 7MeV DTL. Wide injection current range (0-1.5mA) is obtained varying extraction and lens potentials. The booster is a sequence of 3 SCDTL (Side Coupled DTL) modules with output energies of 11.6, 18 and 27MeV. Each module requires less than 2MW peak power in 4us length pulses. All modules are powered by a single klystron. The output beam has been characterized at 10Hz PRF. Fast AC transformers, Faraday cup and ionization chamber have been used for current/charge monitoring, while energy has been measured using a novel detector based on LiF crystals. Systematic measurements have been done to investigate the sensitivity of output beam to machine operating parameters (SCDTL temperatures, stability of injector and RF power) highlightning the existing correlations. The LINAC is part of a 150MeV protontherapy accelerator under development in the framework of the TOP-IMPLART Project.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG31 Upgrades to the LANSCE Isotope Production Facilities Beam Diagnostics 690
  • H.A. Watkins, D. Baros, D. Martinez, L. Rybarcyk, J.D. Sedillo, R.A. Valicenti
    LANL, Los Alamos, New Mexico, USA
  Funding: Work supported by the U.S. Department of Energy. Contract No. DE-AC52-06NA25396
The Los Alamos Neutron Science Center (LANSCE) is currently upgrading the beam diagnostics capability for the Isotope Production Facility (IPF) as part of an Accelerator Improvement Project (AIP). Improvements to measurements of: beam profile, beam energy, beam current and collimator charge are under development. Upgrades include high density harps, emittance slits, wire-scanners, multi-segment adjustable collimator, data acquisition electronics and motion control electronics. These devices will be installed and commissioned for the 2017 run cycle. Details of the hardware design and system development are presented.
poster icon Poster WEPG31 [3.875 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG31  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPG32 First Heating with the European XFEL Laser Heater 694
  • M. Hamberg
    Uppsala University, Uppsala, Sweden
  • F. Brinker, M. Scholz
    DESY, Hamburg, Germany
  Funding: DESY and Swedish Research council
The European XFEL is a 3.4 km long free-electron laser (FEL) which will deliver radiation in the wavelength regime of 0.05 to 4.7 nm. To avoid problems with longitudinal microbunching instabilities a laser heater is implemented. It heats up the electron bunches which will improve the overall brightness level of the FEL. I report the commissioning steps undertaken and the first recorded heating outputs observed in the injector section.
poster icon Poster WEPG32 [2.322 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG32  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)