Author: Day, N.M.
Paper Title Page
WEPG12 A Versatile BPM Signal Processing System Based on the Xilinx Zynq SoC 646
  • R.L. Hulsart, P. Cerniglia, N.M. Day, R.J. Michnoff, Z. Sorrell
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A new BPM electronics module (V301) has been developed at BNL that uses the latest System on a Chip (SoC) technologies to provide a system with better performance and lower cost per module than before. The future of RHIC ion runs will include new RF conditions as well as a wider dynamic range in intensity. Plans for the use of electron beams, both in ion cooling applications and a future electron-ion collider, have also driven this architecture toward a highly configurable approach. The RF input section has been designed such that jumpers can be changed to allow a single board to provide ion or electron optimized analog filtering. These channels are sampled with four 14-bit 400MSPS A/D converters. The SoC's ARM processor allows a Linux OS to run directly on the module along with a controls system software interface. The FPGA is used to process samples from the ADCs and perform position calculations. A suite of peripherals including dual Ethernet ports, uSD storage, and an interface to the RHIC timing system are also included. A second revision board which includes ultra-low jitter ADC clock synthesis and distribution and improved power supplies is currently being commissioned.
poster icon Poster WEPG12 [4.839 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG12  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)