Author: Balzer, B.M.
Paper Title Page
WEPG46 KALYPSO: A Mfps Linear Array Detector for Visible to NIR Radiation 740
  • L. Rota, B.M. Balzer, M. Caselle, A.-S. Müller, M.J. Nasse, G. Niehues, P. Schönfeldt, M. Weber
    KIT, Eggenstein-Leopoldshafen, Germany
  • C. Gerth, B. Steffen
    DESY, Hamburg, Germany
  • N. Hiller, A. Mozzanica
    PSI, Villigen PSI, Switzerland
  • D.R. Makowski, A. Mielczarek
    TUL-DMCS, Łódź, Poland
  Funding: This work is partially funded by the BMBF contract number: 05K16VKA.
The acquisition rate of commercially available line array detectors is a bottleneck for beam diagnostics at high-repetition rate machines like synchrotron lightsources or FELs with a quasi-continuous or macro-pulse operation. In order to remove this bottleneck we have developed KALYPSO, an ultra-fast linear array detector operating at a frame-rate of up to 2.7 Mfps. The KALYPSO detector mounts InGaAs or Si linear array sensors to measure radiation in the near-infrared or visible spectrum. The FPGA-based read-out card can be connected to an external data acquisition system through a high-performance PCI-Express 3.0 data-link, allowing continuous data taking and real-time data analysis. The detector is fully synchronized with the timing system of the accelerator and other diagnostic instruments. The detector is currently installed at several accelerators: ANKA, the European XFEL and TELBE. We present the detector and the results obtained with Electro-Optical Spectral Decoding (EOSD) setups.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG46  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)